Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Basic Clin Physiol Pharmacol ; 34(2): 161-168, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2245195

ABSTRACT

The COVID-19 pandemic remains a severe global threat, with the world engulfed in the struggle against the disease's second or third waves, which are approaching frightening proportions in terms of cases and mortality in many nations. Despite the critical need for effective therapy, there is still uncertainty about the optimal practices for treating COVID-19 with various pharmaceutical approaches. This being third year, global immunity and eradication of SARS-CoV-2 is currently seems to be out of reach. Efforts to produce safe and effective vaccinations have shown promise, and progress is being made. Additional therapeutic modalities, as well as vaccine testing in children, are required for prophylaxis and treatment of high-risk individuals. As a result, neutralising antibodies and other comparable therapeutic options offer a lot of promise as immediate and direct antiviral medications. Bispecific antibodies offer a lot of potential in COVID-19 treatment because of their qualities including stability, small size and ease of manufacture. These can be used to control the virus's infection of the lungs because they are available in an inhalational form. To combat the COVID-19 pandemic, innovative approaches with effective nanobodies, high-expression yield and acceptable costs may be required.


Subject(s)
Antibodies, Bispecific , COVID-19 , Child , Humans , SARS-CoV-2 , COVID-19/therapy , Antibodies, Bispecific/therapeutic use , Pandemics/prevention & control , COVID-19 Drug Treatment
3.
Acta Pharmacol Sin ; 44(7): 1455-1463, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2221797

ABSTRACT

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.


Subject(s)
Antibodies, Bispecific , COVID-19 , Humans , SARS-CoV-2 , Combined Antibody Therapeutics , Neutralization Tests , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing
5.
JAMA Netw Open ; 5(10): e2238961, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2094120

ABSTRACT

This case series describes the kinetics of humoral deficiency in patients with relapsed refractory multiple myeloma treated with bispecific antibodies, the infectious complications, and response to COVID-19 immunization.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Kinetics , Neoplasm Recurrence, Local , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized
6.
N Engl J Med ; 387(6): 495-505, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-2031919

ABSTRACT

BACKGROUND: Teclistamab is a T-cell-redirecting bispecific antibody that targets both CD3 expressed on the surface of T cells and B-cell maturation antigen expressed on the surface of myeloma cells. In the phase 1 dose-defining portion of the study, teclistamab showed promising efficacy in patients with relapsed or refractory multiple myeloma. METHODS: In this phase 1-2 study, we enrolled patients who had relapsed or refractory myeloma after at least three therapy lines, including triple-class exposure to an immunomodulatory drug, a proteasome inhibitor, and an anti-CD38 antibody. Patients received a weekly subcutaneous injection of teclistamab (at a dose of 1.5 mg per kilogram of body weight) after receiving step-up doses of 0.06 mg and 0.3 mg per kilogram. The primary end point was the overall response (partial response or better). RESULTS: Among 165 patients who received teclistamab, 77.6% had triple-class refractory disease (median, five previous therapy lines). With a median follow-up of 14.1 months, the overall response rate was 63.0%, with 65 patients (39.4%) having a complete response or better. A total of 44 patients (26.7%) were found to have no minimal residual disease (MRD); the MRD-negativity rate among the patients with a complete response or better was 46%. The median duration of response was 18.4 months (95% confidence interval [CI], 14.9 to not estimable). The median duration of progression-free survival was 11.3 months (95% CI, 8.8 to 17.1). Common adverse events included cytokine release syndrome (in 72.1% of the patients; grade 3, 0.6%; no grade 4), neutropenia (in 70.9%; grade 3 or 4, 64.2%), anemia (in 52.1%; grade 3 or 4, 37.0%), and thrombocytopenia (in 40.0%; grade 3 or 4, 21.2%). Infections were frequent (in 76.4%; grade 3 or 4, 44.8%). Neurotoxic events occurred in 24 patients (14.5%), including immune effector cell-associated neurotoxicity syndrome in 5 patients (3.0%; all grade 1 or 2). CONCLUSIONS: Teclistamab resulted in a high rate of deep and durable response in patients with triple-class-exposed relapsed or refractory multiple myeloma. Cytopenias and infections were common; toxic effects that were consistent with T-cell redirection were mostly grade 1 or 2. (Funded by Janssen Research and Development; MajesTEC-1 ClinicalTrials.gov numbers, NCT03145181 and NCT04557098.).


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents, Immunological , B-Cell Maturation Antigen , CD3 Complex , Multiple Myeloma , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Cell Maturation Antigen/antagonists & inhibitors , CD3 Complex/antagonists & inhibitors , Humans , Injections, Subcutaneous , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/drug therapy , Recurrence , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
7.
MAbs ; 14(1): 2031483, 2022.
Article in English | MEDLINE | ID: covidwho-1713454

ABSTRACT

Early humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are dominated by IgM and IgA antibodies, which greatly contribute to virus neutralization at mucosal sites. Given the essential roles of IgM and IgA in the control and elimination of SARS-CoV-2 infection, the mucosal immunity could be exploited for therapeutic and prophylactic purposes. However, almost all neutralizing antibodies that are authorized for emergency use and under clinical development are IgG antibodies, and no vaccine has been developed to boost mucosal immunity for SARS-CoV-2 infection. In addition to IgM and IgA, bispecific antibodies (bsAbs) combine specificities of two antibodies in one molecule, representing an important alternative to monoclonal antibody cocktails. Here, we summarize the latest advances in studies on IgM, IgA and bsAbs against SARS-CoV-2. The current challenges and future directions in vaccine design and antibody-based therapeutics are also discussed.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Viral/immunology , COVID-19 Drug Treatment , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin A/immunology , Immunoglobulin A/therapeutic use , Immunoglobulin M/immunology , Immunoglobulin M/therapeutic use , SARS-CoV-2
8.
Haemophilia ; 27(5): 736-743, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1288288

ABSTRACT

BACKGROUND: Emicizumab, a bispecific monoclonal antibody administered subcutaneously, mimicking the action of activated coagulation factor VIII, has been approved in Europe for use in patients with severe hemophilia of all ages. AIMS: To assess availability, acceptance, adverse events, efficacy and laboratory monitoring of emicizumab and the effect of the coronavirus disease 2019 (COVID-19) pandemic on its use. METHODS: Online questionnaire sent to 144 hemophilia treatment centres (November 2020 to January 2021). RESULTS: Forty-six physicians from 21 countries responded, with a total of 3420 patients with severe HA under their care. Emicizumab was widely available, for 100% of inhibitor patients and 88% of non-inhibitor patients. No major adverse events were reported. Four reported deaths in patients on emicizumab were not thought to be related to emicizumab. An annualized bleeding rate (ABR) of zero was achieved in 73% of inhibitors patients. Haemostasis was satisfactory in the majority of minor (93.7%) and major (90.7%) surgical procedures performed while on emicizumab. Inhibitor titers were monitored in 78.4% of inhibitor patients on emicizumab, but chromogenic FVIII assay was only available in 73% of centres. The COVID-19 pandemic did not have a major impact on the adoption of emicizumab in most centres (64.9%). CONCLUSION: Three years after its rollout in Europe, emicizumab is widely available. Clinical efficacy and safety were evaluated to be very good, keeping in mind the inherent limitations of the study. Unmet needs include establishment of treatment guidelines for surgery and breakthrough bleeding, limited expertise, especially in young children, and availability of laboratory assays.


Subject(s)
Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , Hemophilia A , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Europe , Factor VIII , Hemophilia A/drug therapy , Humans , Pandemics , Surveys and Questionnaires
10.
Nature ; 593(7859): 424-428, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152859

ABSTRACT

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Body Weight , COVID-19/prevention & control , Dependovirus/genetics , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Immune Evasion/genetics , Mice , Mice, Inbred C57BL , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Drug Treatment
11.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120888

ABSTRACT

Immunotherapy is a highly emerging form of breast cancer therapy that enables clinicians to target cancers with specific receptor expression profiles. Two popular immunotherapeutic approaches involve chimeric antigen receptor-T cells (CAR-T) and bispecific antibodies (BsAb). Briefly mentioned in this review as well is the mRNA vaccine technology recently popularized by the COVID-19 vaccine. These forms of immunotherapy can highly select for the tumor target of interest to generate specific tumor lysis. Along with improvements in CAR-T, bispecific antibody engineering, and therapeutic administration, much research has been done on novel molecular targets that can especially be useful for triple-negative breast cancer (TNBC) immunotherapy. Combining emerging immunotherapeutics with tumor marker discovery sets the stage for highly targeted immunotherapy to be the future of cancer treatments. This review highlights the principles of CAR-T and BsAb therapy, improvements in CAR and BsAb engineering, and recently identified human breast cancer markers in the context of in vitro or in vivo CAR-T or BsAb treatment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy/methods , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Humans , Immunotherapy, Adoptive/methods , Molecular Targeted Therapy , Receptors, Chimeric Antigen/immunology , SARS-CoV-2/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
12.
MAbs ; 13(1): 1893426, 2021.
Article in English | MEDLINE | ID: covidwho-1118886

ABSTRACT

Numerous neutralizing antibodies that target SARS-CoV-2 have been reported, and most directly block binding of the viral Spike receptor-binding domain (RBD) to angiotensin-converting enzyme II (ACE2). Here, we deliberately exploit non-neutralizing RBD antibodies, showing they can dramatically assist in neutralization when linked to neutralizing binders. We identified antigen-binding fragments (Fabs) by phage display that bind RBD, but do not block ACE2 or neutralize virus as IgGs. When these non-neutralizing Fabs were assembled into bispecific VH/Fab IgGs with a neutralizing VH domain, we observed a ~ 25-fold potency improvement in neutralizing SARS-CoV-2 compared to the mono-specific bi-valent VH-Fc alone or the cocktail of the VH-Fc and IgG. This effect was epitope-dependent, reflecting the unique geometry of the bispecific antibody toward Spike. Our results show that a bispecific antibody that combines both neutralizing and non-neutralizing epitopes on Spike-RBD is a promising and rapid engineering strategy to improve the potency of SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Immunoglobulin Fab Fragments/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/genetics , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , COVID-19/genetics , Epitopes/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
14.
Haemophilia ; 27(1): 41-48, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1066683

ABSTRACT

INTRODUCTION: The SARS-CoV-2 coronavirus-induced infection (COVID-19) can be associated with a coagulopathy mainly responsible for pulmonary microvasculature thrombosis and systemic thromboembolic manifestations. The pathophysiology and management of the COVID-19 coagulopathy are likely more complex in patients with inherited bleeding diseases such as haemophilia. These individuals might indeed present with both bleeding and thrombotic complications and require simultaneous antithrombotic and haemostatic treatments. OBJECTIVE: We propose practical guidance for the diagnosis and management of COVID-19 coagulopathy in persons with haemophilia. RESULTS: Continuation of regular haemostatic treatment is recommended for ambulatory patients. For patients requiring hospital admission and on replacement therapy with factors VIII or IX concentrates, prophylaxis with concentrates should be intensified according to the risk of bleeding complications and associated with prophylactic doses of LMWH. For patients on nonreplacement therapy, emicizumab should be continued and possibly combined with factor VIII and prophylactic doses of LMWH depending on the risk of bleeding and thrombosis. Dose escalation of LMWH tailored to the risk of thrombosis can be employed but not supported by evidence. CONCLUSIONS: These practical recommendations are based on the current literature on COVID-19 with its impact on haemostasis, indications and modalities for thromboprophylaxis mainly in nonhaemophilic patients and how that is likely to affect persons with haemophilia in different circumstances. They will need to be tailored to each patient's clinical status and validated in future studies.


Subject(s)
COVID-19/complications , Disseminated Intravascular Coagulation/complications , Hemophilia A/complications , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , COVID-19/diagnosis , COVID-19/therapy , Disease Management , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/therapy , Factor IX/therapeutic use , Factor VIII/therapeutic use , Hemophilia A/diagnosis , Hemophilia A/therapy , Heparin, Low-Molecular-Weight/therapeutic use , Humans
15.
Int Immunopharmacol ; 86: 106760, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-634138

ABSTRACT

Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.


Subject(s)
Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Biological Products/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Drug Design , Drug Discovery , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , COVID-19 Drug Treatment
17.
J Thromb Haemost ; 18(9): 2202-2204, 2020 09.
Article in English | MEDLINE | ID: covidwho-593310

ABSTRACT

COVID-19 can be associated with coagulopathy (CAC, COVID-19-associated coagulopathy) with a high prothrombotic risk based on an intense inflammatory response to viral infection leading to immunothrombosis through different procoagulant pathways. Emerging evidence suggests that the use of heparin in these patients could be associated with lower mortality. Emicizumab is a bispecific humanized monoclonal antibody that bridges activated factor IX and factor X, thereby restoring the function of missing factor VIIIa in hemophilia A. The use of emicizumab has been associated with thrombotic events in patients who also received high cumulative amounts of activated prothrombin complex concentrates. Although this risk is extremely low, there is a lack of evidence on whether CAC increases the thrombotic risk in patients on emicizumab prophylaxis. We present the case of a patient with severe hemophilia A in prophylaxis treatment with emicizumab; due to the potential thrombotic risk we decided to administer low molecular weight heparin as prophylaxis treatment without any thrombotic or bleeding complications.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Hemophilia A/complications , Hemophilia A/drug therapy , Venous Thromboembolism/prevention & control , Anticoagulants/therapeutic use , Blood Coagulation , Coagulants , Factor IXa/chemistry , Factor X/chemistry , Follow-Up Studies , HIV Infections/complications , Hepatitis C/complications , Humans , Inflammation , Lymphoma, Non-Hodgkin/complications , Male , Middle Aged , Thrombosis , Venous Thromboembolism/drug therapy
18.
Semin Thromb Hemost ; 46(7): 819-822, 2020 10.
Article in English | MEDLINE | ID: covidwho-593025
SELECTION OF CITATIONS
SEARCH DETAIL